Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 294, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553378

RESUMO

Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.


Assuntos
Neoplasias Associadas a Colite , Colite , Idoso , Camundongos , Humanos , Animais , Neoplasias Associadas a Colite/complicações , Qualidade de Vida , Intestinos , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Cicatrização/genética , Fibroblastos , Músculo Liso , Microambiente Tumoral
2.
Stem Cell Res Ther ; 14(1): 184, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501214

RESUMO

BACKGROUND: Decompensated liver cirrhosis (DLC), a terminal-stage complication of liver disease, is a major cause of morbidity and mortality in patients with hepatopathies. Human umbilical cord mesenchymal stem cell (hUCMSC) therapy has emerged as a novel treatment alternative for the treatment of DLC. However, optimized therapy protocols and the associated mechanisms are not entirely understood. METHODS: We constructed a DLC rat model consistent with the typical clinical characteristics combined use of PB and CCL4. Performing dynamic detection of liver morphology and function in rats for 11 weeks, various disease characteristics of DLC and the therapeutic effect of hUCMSCs on DLC in experimental rats were thoroughly investigated, according to ascites examination, histopathological, and related blood biochemical analyses. Flow cytometry analysis of rat liver, immunofluorescence, and RT-qPCR was performed to examine the changes in the liver immune microenvironment after hucMSCs treatment. We performed RNA-seq analysis of liver and primary macrophages and hUCMSCs co-culture system in vitro to explore possible signaling pathways. PPARγ antagonist, GW9662, and clodronate liposomes were used to inhibit PPAR activation and pre-exhaustion of macrophages in DLC rats' livers, respectively. RESULTS: We found that changing the two key issues, the frequency and initial phase of hUCMSCs infusion, can affect the efficacy of hUCMSCs, and the optimal hUCMSCs treatment schedule is once every week for three weeks at the early stage of DLC progression, providing the best therapeutic effect in reducing mortality and ascites, and improving liver function in DLC rats. hUCMSCs treatment skewed the macrophage phenotype from M1-type to M2-type by activating the PPARγ signaling pathway in the liver, which was approved by primary macrophages and hUCMSCs co-culture system in vitro. Both inhibition of PPARγ activation with GW9662 and pre-exhaustion of macrophages in DLC rats' liver abolished the regulation of hUCMSCs on macrophage polarization, thus attenuating the beneficial effect of hUCMSCs treatment in DLC rats. CONCLUSIONS: These data demonstrated that the optimal hUCMSCs treatment effectively inhibits the ascites formation, prolongs survival and significantly improves liver structure and function in DLC rats through the activation of the PPARγ signaling pathway within liver macrophages. Our study compared the efficacy of different hUCMSCs infusion regimens for DLC, providing new insights on cell-based therapies for regenerative medicine.


Assuntos
Ascite , PPAR gama , Ratos , Humanos , Animais , PPAR gama/genética , Ascite/terapia , Cirrose Hepática/terapia , Macrófagos , Cordão Umbilical
3.
Mol Hum Reprod ; 29(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37369038

RESUMO

The remodeling of uterine spiral arteries is a complex process requiring the dynamic action of various cell types. During early pregnancy, extravillous trophoblast (EVT) cells differentiate and invade the vascular wall, replacing the vascular smooth muscle cells (VSMCs). Several in vitro studies have shown that EVT cells play an important role in promoting VSMC apoptosis, however, the mechanism underlying this process is not fully understood. In this study, we demonstrated that EVT-conditioned media and EVT-derived exosomes could induce VSMC apoptosis. Through data mining and experimental verification, it was demonstrated that the EVT exosome miR-143-3p induced VSMC apoptosis in both VSMCs and a chorionic plate artery (CPA) model. Furthermore, FAS ligand was also expressed on the EVT exosomes and may play a co-ordinated role in apoptosis induction. These data clearly demonstrated that VSMC apoptosis is mediated by EVT-derived exosomes and their cargo of miR-143-3p as well as their cell surface presentation of FASL. This finding increases our understanding of the molecular mechanisms underlying the regulation of VSMC apoptosis during spiral artery remodeling.


Assuntos
Exossomos , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Exossomos/genética , Artéria Uterina/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
Bioprocess Biosyst Eng ; 46(7): 1045-1052, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253987

RESUMO

Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.


Assuntos
Antifúngicos , Equinocandinas , Fermentação , Equinocandinas/genética , Equinocandinas/química , Antifúngicos/farmacologia , Antifúngicos/química
6.
J Ovarian Res ; 16(1): 81, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087461

RESUMO

BACKGROUND: Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS: Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS: HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Proliferação de Células , Chaperonina 60 , Neoplasias Ovarianas , Ácido Tióctico , Feminino , Humanos , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Choque Térmico , Proteínas Mitocondriais/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ácido Tióctico/farmacologia
7.
Sensors (Basel) ; 23(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37112350

RESUMO

The development of prognostics and health management solutions in the manufacturing industry has lagged behind academic advances due to a number of practical challenges. This work proposes a framework for the initial development of industrial PHM solutions that is based on the system development life cycle commonly used for software-based applications. Methodologies for completing the planning and design stages, which are critical for industrial solutions, are presented. Two challenges that are inherent to health modeling in manufacturing environments, data quality and modeling systems that experience trend-based degradation, are then identified and methods to overcome them are proposed. Additionally included is a case study documenting the development of an industrial PHM solution for a hyper compressor at a manufacturing facility operated by The Dow Chemical Company. This case study demonstrates the value of the proposed development process and provides guidelines for utilizing it in other applications.


Assuntos
Indústrias , Software , Prognóstico , Comércio , Modelos Biológicos
8.
Front Pharmacol ; 13: 982841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120341

RESUMO

Sericin is a natural protein produced by the silkworm Bombyx mori, which has a wide range of biological activities and has a broad application prospect in multiple areas. However, systemic toxicity and safety assessment of sericin is still rare. This study was aimed to evaluate the toxic effects of water-extract sericin from cocoons of Bombyx mori in pregnant rats and their fetuses during pregnancy. Eighty pregnant rats were randomly divided into three treatment groups, one negative and one positive control group. The treatment groups were administered water-extract sericin solutions at doses of 1,000, 500, and 250 mg/kg, while the negative and positive control groups were administered pure water and 300 mg/kg aspirin, respectively. Rats were exposed daily by oral gavage from the seventh day of gestation for 10 consecutive days and sacrificed on the 20th day of gestation. The results showed that water-extract sericin did not induce any treatment-related changes on pregnant rats (clinical signs, body weights, food consumption, ovarian and uterine weights) and fetuses (body weights, body lengths, tail lengths, visceral, and skeletal development). The no-observed-adverse-effect-level (NOAEL) of sericin was determined to be 1,000 mg/kg body weight in rats. These results indicated that water-extract sericin is of low teratogenic potential under the experimental conditions of this study.

9.
Stem Cell Res Ther ; 13(1): 465, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076306

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS: hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS: hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION: Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.


Assuntos
Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Animais , Colite/induzido quimicamente , Doença de Crohn/patologia , Fibrose , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interferon gama/genética , Interferon gama/metabolismo , Ácido Cinurênico/efeitos adversos , Ácido Cinurênico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos
10.
Front Cell Dev Biol ; 10: 852561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493107

RESUMO

Background: Syncytin, a retroviral envelope protein, is specifically expressed on trophoblast cells and mediates formation of the syncytiotrophoblast through fusogenic activity. Decreased expression of Syncytin was found in fetal growth restriction placentas. Results: By generating an inducible knockout of the syncytin-a gene in mice, we show a specific disruption of placental angiogenesis with abnormal formation of two syncytiotrophoblast layers. Consistent with the defects observed in vivo, conditioned medium collected from trophoblast cells, following Syncytin-1 knockdown, contains lower expression of vascular endothelial growth factor and placental growth factor, and higher levels of soluble fms-like protein kinase-1 in BeWo and HTR-8/SVneo cells which related with suppressed PI3K/Akt/mTOR pathway, and is reduced in ability to induce tube formation by HUVECs. Conclusion: Syncytin participates in angiogenesis during placental development was first identified both in vivo and in vitro. Here, we give a new sight on understanding syncytin and pathophysiology of placenta related disease such as fetal growth restriction.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35544723

RESUMO

Transplantation of encapsulated islets has been shown to hold a promising potential treatment for type 1 diabetes (T1D). However, there are several obstacles to overcome, such as immune rejection by the host of the grafts, sustainability of islet function, and retrievability or replacement of the encapsulated system, hinder their clinical applications. In this study, mini-capsule devices containing islets were fabricated by using digital light processing (DLP) 3D printing. To ensure a high survival rate and low immunogenicity of the fabricated islets, 20s was selected as the most suitable printing condition. Meanwhile, the mini-capsule devices with a groove structure were fabricated to prevent islet cells leakage. Subcutaneous transplantations of encapsulated islets in immunocompetent C57BL/6 mice indicated significant improvement in the symptoms of streptozotocin-induced hyperglycemia without any immunosuppression treatment for at least 15 weeks. In vivo intraperitoneal glucose tolerance tests (IPGTT) performed at different time points demonstrated therapeutically relevant glycemic ameliorate of the device. The implants retrieved after 15 weeks still contained viable and adequate numbers of islet cells. The results of this study indicate that the proposed mini-capsule device can deliver sufficient islet cell mass, prevent islet cells leakage, and maintain long-term cell survival while allowing easy retrieval. Furthermore, the proposed encapsulated islets may help with T1D cellular treatment by overcoming the obstacles of islet transplantation.

13.
Placenta ; 121: 155-163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35349915

RESUMO

INTRODUCTION: Cell-cell fusion of cytotrophoblasts into the syncytiotrophoblast layer is a key process in placental development. Syncytin, an endogenous retroviral envelope protein, is expressed in placental trophoblasts and specifically mediates syncytiotrophoblast layer formation. Syncytin deficiency has been observed in fetal growth-restricted placentas. Abnormal fetal growth, especially fetal growth restriction, is associated with the decreased expression of glucose transporters. Here, we aimed to determine the role of syncytin in fetal growth restriction in placental glucose transport capacity. METHODS: To better explore the function of syncytin in fetal growth-restricted placenta, we generated an inducible knockout mouse model of syncytin-a gene. The expression levels of glucose transporters in BeWo cells were measured before and after HERV-W knockdown. RESULTS: Syncytin-A disruption was associated with significant abnormalities in placental and fetal development in mice. Syncytin-A destruction causes extensive abnormalities in the maternal-fetal exchange structures in the labyrinth, including an extremely reduced number and dramatically irregular distribution of fetal vessels. Moreover, glucose transporter 1, glucose transporters 3, and connexin 26 expression levels decreased after E14.5. Consistently, low glucose transporter 1, glucose transporter 3, and connexin 26 levels were observed in HERV-W-silenced BeWo cells. DISCUSSION: Syncytin-A is crucial for both syncytiotrophoblast layer development and morphogenesis, suggesting that syncytin-A disruption leads to fetal growth restriction associated with abnormalities in the maternal-fetal exchange barrier and decreased glucose transport.


Assuntos
Retardo do Crescimento Fetal , Placenta , Animais , Conexina 26/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Camundongos Knockout , Placenta/metabolismo , Gravidez , Proteínas da Gravidez , Trofoblastos/metabolismo
14.
Stem Cell Res Ther ; 12(1): 294, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016164

RESUMO

BACKGROUND: Liver fibrosis (LF) is a common pathological process characterized by the activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix. Severe LF causes cirrhosis and even liver failure, a major cause of morbidity and mortality worldwide. Transplantation of human placental mesenchymal stem cells (hPMSCs) has been considered as an alternative therapy. However, the underlying mechanisms and the appropriate time window for hPMSC transplantation are not well understood. METHODS: We established mouse models of CCl4-injured LF and administered hPMSCs at different stages of LF once a week for 2 weeks. The therapeutic effect of hPMSCs on LF was investigated, according to histopathological and blood biochemical analyses. In vitro, the effect of hPMSCs and the secretomes of hPMSCs on the inhibition of activated HSCs was assessed. RNA sequencing (RNA-seq) analysis, real-time PCR array, and western blot were performed to explore possible signaling pathways involved in treatment of LF with hPMSCs. RESULTS: hPMSC treatment notably alleviates experimental hepatic fibrosis, restores liver function, and inhibits inflammation. Furthermore, the therapeutic effect of hPMSCs against mild-to-moderate LF was significantly greater than against severe LF. In vitro, we observed that the hPMSCs as well as the secretomes of hPMSCs were able to decrease the activation of HSCs. Mechanistic dissection studies showed that hPMSC treatment downregulated the expression of fibrosis-related genes, and this was accompanied by the upregulation of Caveolin-1 (Cav1) (p < 0.001). This suggested that the amelioration of LF occurred partly due to the restoration of Cav1 expression in activated HSCs. Upregulation of Cav1 can inhibit the TGF-ß/Smad signaling pathway, mainly by reducing Smad2 phosphorylation, resulting in the inhibition of activated HSCs, whereas this effect could be abated if Cav1 was silenced in advance by siRNAs. CONCLUSIONS: Our findings suggest that hPMSCs could provide multifaceted therapeutic benefits for the treatment of LF, and the TGF-ß/Cav1 pathway might act as a therapeutic target for hPMSCs in the treatment of LF.


Assuntos
Células Estreladas do Fígado , Células-Tronco Mesenquimais , Animais , Feminino , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Camundongos , Placenta , Gravidez , Regulação para Cima
15.
Front Oncol ; 11: 582277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718139

RESUMO

Mutation of the DNAJC12 gene is typically associated with non-progressive Parkinsonism, but is also detectable in breast carcinoma where its contribution and mechanisms are unexplored. In breast carcinoma, ESR1 was positively correlated with DNAJC12 and ERBB4, and DNAJC12 was positively correlated with ERBB4. We used the GEO2R tool to compare differential gene expression of MCF-7 cells, following ESR1 knockdown (GEO database, E-GEOD-27473 array), and found decreased expression of DNAJC12 and ERBB4 in ESR1-silenced MCF-7 cells. The number of identical genes having correlativity with ESR1, DNAJC12, or ERBB4 was 12,165 (66.41%). These results suggest that ESR1 can promote the expression of DNAJC12 and ERBB4, and DNAJC12 can enhance the expression of ERBB4 in MCF-7 cells, implying that there may be a regulatory network among these three genes.

16.
Commun Biol ; 3(1): 518, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948809

RESUMO

Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level.


Assuntos
Aedes/metabolismo , Vírus da Dengue/genética , Metabolismo dos Lipídeos/genética , Wolbachia/genética , Aedes/microbiologia , Aedes/patogenicidade , Aedes/virologia , Animais , Dengue/genética , Dengue/metabolismo , Dengue/microbiologia , Dengue/virologia , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Controle Biológico de Vetores , Replicação Viral/genética , Wolbachia/metabolismo , Wolbachia/patogenicidade
17.
Front Psychol ; 11: 1607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848995

RESUMO

With millions of viewers globally, live streaming is a new social media that can deliver video content in real time and with many social interaction functions. Our research aims to understand the personality traits and the motivations of active live streaming viewers as well as their user behaviors in the general population in China. Our results indicate that extraversion was negatively associated with live streaming use, while openness was positively associated. The main motivations to watch live streaming were social interaction, information gathering, and entertainment, and they were associated with different frequencies of use and genre selection. Financial tipping behavior was positively associated with social interaction. Furthermore, motivations mediated the effects of personality traits on live streaming use. People high in openness were more likely to be motivated to chat by information needs. Among extraverts, those who were more social watched fewer streams. We demonstrated that personality traits and motivations can jointly predict live streaming use. The current study not only provides the first evidence of live streaming use with personality traits and motivations but also expands the perspective on individual difference with the mediation analysis. Practically, the person-situation joint interpretation can give industry a clear indication on how to design personalized user experience for people with different personality traits and motivations.

18.
Cell Death Dis ; 11(6): 482, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587258

RESUMO

Transcription factors are known to mediate the conversion of somatic cells to induced pluripotent stem cells (iPSCs). Transcription factor TFAP2C plays important roles in the regulation of embryonic development and carcinogenesis; however, the roles of Tfap2c in regulating somatic cell reprogramming are not well understood. Here we demonstrate Tfap2c is induced during the generation of iPSCs from mouse fibroblasts and acts as a facilitator for iPSCs formation. Mechanistically, the c-Myc-dependent apoptosis, which is a roadblock to reprogramming, can be significantly mitigated by Tfap2c overexpression. Meanwhile, Tfap2c can greatly promote mesenchymal-to-epithelial transition (MET) at initiation stage of OSKM-induced reprogramming. Further analysis of gene expression and targets of Tfap2c during reprogramming by RNA-sequencing (RNA-seq) and ChIP-qPCR indicates that TFAP2C can promote epithelial gene expression by binding to their promoters directly. Finally, knockdown of E-cadherin (Cdh1), an important downstream target of TFAP2C and a critical regulator of MET antagonizes Tfap2c-mediated reprogramming. Taken together, we conclude that Tfap2c serves as a strong activator for somatic cell reprogramming through promoting the MET and inhibiting c-Myc-dependent apoptosis.


Assuntos
Apoptose , Reprogramação Celular , Transição Epitelial-Mesenquimal , Fator de Transcrição AP-2/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Reprogramação Celular/genética , Transição Epitelial-Mesenquimal/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima/genética
19.
Sci Total Environ ; 711: 134534, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810668

RESUMO

Cadmium (Cd) is a toxic element that can accumulate in plants and poses a threat to human health through biomagnification. There are differences in Cd levels among different plants tissues. Hence, an optimal crop that possesses low Cd levels in the edible parts but high levels in the inedible parts is urgently needed to simultaneously lower soil-Cd levels in contaminated fields and to produce Cd-safe crops. In this study, we investigated the Cd levels in tubers and other tissues of potato (Solanum tuberosum L.) using different experimental approaches, and identified variations in Cd accumulation in different potato cultivars and characterized the Cd-distribution pattern in potato. Our results showed that Cd accumulation in tubers of the tested cultivars varied greatly, and that tuber-Cd levels were much lower than in the stems or leaves. Two-way ANOVA revealed that the tuber-Cd levels in potato are determined by both genotypic differences and the soil-Cd levels of the farmlands. Among the cultivars tested, one cultivar, 'Eshu10', was found to have the lowest tuber-Cd levels but had much higher Cd levels in leaf and stem tissues. Our study shows that the Cd-distribution pattern within potato plants makes it an ideal candidate for the safe production of a staple food that also has the potential to contribute to the remediation of contaminated soils.


Assuntos
Solanum tuberosum , Cádmio , Tubérculos , Solo , Poluentes do Solo
20.
PLoS Negl Trop Dis ; 11(3): e0005426, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267749

RESUMO

BACKGROUND: Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated to cause 390 million human infections annually. A novel method for DENV control involves stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the susceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the potential of resident microbiota, which can play important roles in insect physiology and immune responses, to affect Wolbachia-mediated DENV blocking. METHODOLOGY/FINDINGS: The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that although Wolbachia affected the relative abundance of several genera, the microbiome of both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection with DENV by blood-meal. In spite of a significant shift in the microbiome composition in response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection rates, or on the DENV load of infected mosquitoes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that stable infection with Wolbachia strain wMel produces few effects on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the microbiome can be significantly altered without affecting the fundamental DENV blocking phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota in the field, this is a particularly important result in the context of using Wolbachia as a method for DENV control.


Assuntos
Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/crescimento & desenvolvimento , Microbioma Gastrointestinal , Interações Microbianas , Wolbachia/crescimento & desenvolvimento , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...